Unified, Minimal and Selectively Randomizable Structure-Preserving Signatures
نویسندگان
چکیده
We construct a structure-preserving signature scheme that is selectively randomizable and works in all types of bilinear groups. We give matching lower bounds showing that our structure-preserving signature scheme is optimal with respect to both signature size and public verification key size. State of the art structure-preserving signatures in the asymmetric setting consist of 3 group elements, which is known to be optimal. Our construction preserves the signature size of 3 group elements and also at the same time minimizes the verification key size to 1 group element. Depending on the application, it is sometimes desirable to have strong unforgeability and in other situations desirable to have randomizable signatures. To get the best of both worlds, we introduce the notion of selective randomizability where the signer may for specific signatures provide randomization tokens that enable randomization. Our structure-preserving signature scheme unifies the different pairingbased settings since it can be instantiated in both symmetric and asymmetric groups. Since previously optimal structure-preserving signatures had only been constructed in asymmetric bilinear groups this closes an important gap in our knowledge. Having a unified signature scheme that works in all types of bilinear groups is not just conceptually nice but also gives a hedge against future cryptanalytic attacks. An instantiation of our signature scheme in an asymmetric bilinear group may remain secure even if cryptanalysts later discover an efficiently computable homomorphism between the source groups.
منابع مشابه
Efficient Fully Structure-Preserving Signatures for Large Messages
We construct both randomizable and strongly existentially unforgeable structure-preserving signatures for messages consisting of many group elements. To sign a message consisting of N = mn group elements we have a verification key size of m group elements and signatures contain n+2 elements. Verification of a signature requires evaluating n+1 pairing product equations. We also investigate the c...
متن کاملMore Efficient Structure-Preserving Signatures - Or: Bypassing the Type-III Lower Bounds
Structure-preserving signatures are an important cryptographic primitive that is useful for the design of modular cryptographic protocols. It has been proven that structure-preserving signatures (in the most efficient Type-III bilinear group setting) have a lower bound of 3 group elements in the signature (which must include elements from both source groups) and require at least 2 pairing-produ...
متن کاملStrongly-Optimal Structure Preserving Signatures from Type II Pairings: Synthesis and Lower Bounds
Recent work on structure-preserving signatures studies optimality of these schemes in terms of the number of group elements needed in the verification key and the signature, and the number of pairing-product equations in the verification algorithm. While the size of keys and signatures is crucial for many applications, another important aspect to consider for performance is the time it takes to...
متن کاملStructure-Preserving Chosen-Ciphertext Security with Shorter Verifiable Ciphertexts
Structure-preserving cryptography is a world where messages, signatures, ciphertexts and public keys are entirely made of elements of a group over which a bilinear map is efficiently computable. While structure-preserving signatures have received much attention the last 6 years, structure-preserving encryption schemes have undergone slower development. In particular, the best known structure-pr...
متن کاملShort Structure-Preserving Signatures
We construct a new structure-preserving signature scheme in the efficient Type-III asymmetric bilinear group setting with signatures shorter than all existing schemes. Our signatures consist of 3 group elements from the first source group and therefore have shorter size than all existing schemes as existing ones have at least one component of the signature in the second source group whose eleme...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- IACR Cryptology ePrint Archive
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014